

Maximizing HAZOP/LOPA Quality

Steven T. Maher, PE CSP Risk Management Professionals

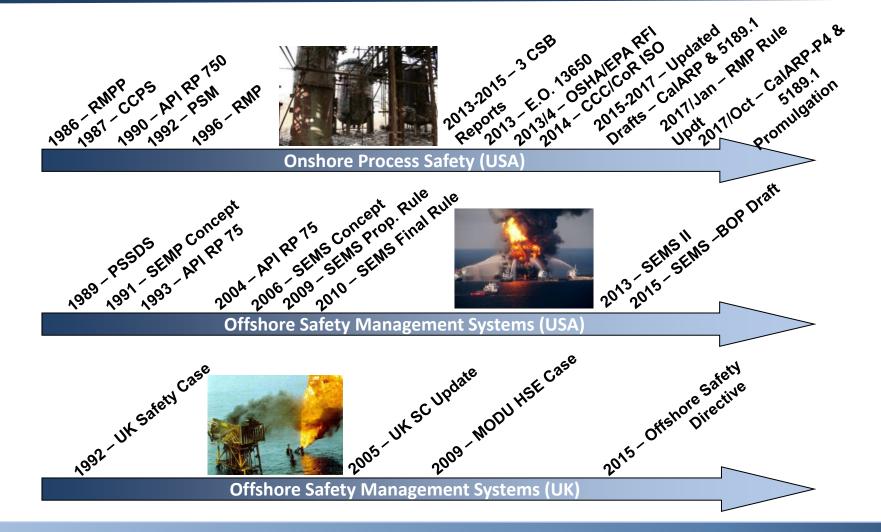
TH-A2 - Part 3 March 23, 2023

25th California Unified Program Annual Training Conference March 20 – 23, 2023

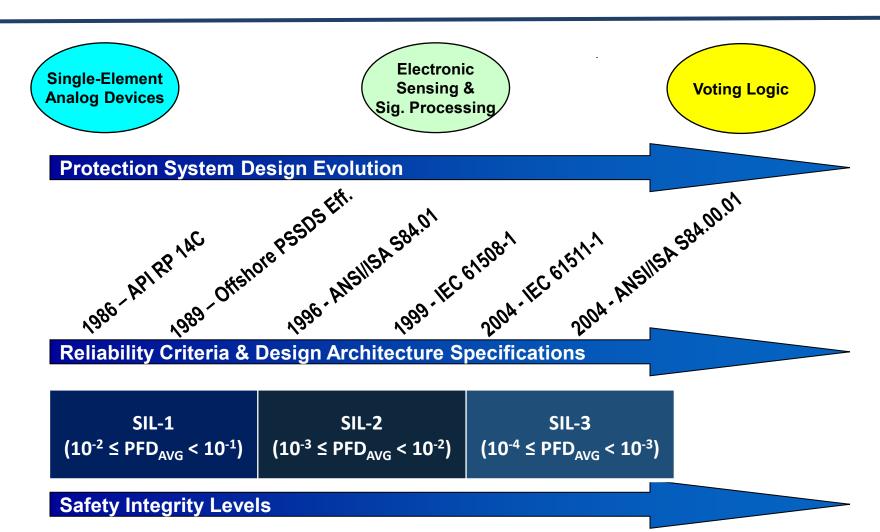
Key Topics

- Why Quality Process Hazard Analysis (PHA) is Important
- Brief History of Key PHA Techniques & Regulatory Requirements
- Resources & Preparation
- Tips for Conducting a Quality PHA
- PHA Documentation
- Common PHA Quality Challenges
- Maximizing the Future Usefulness of the PHA
- Questions?

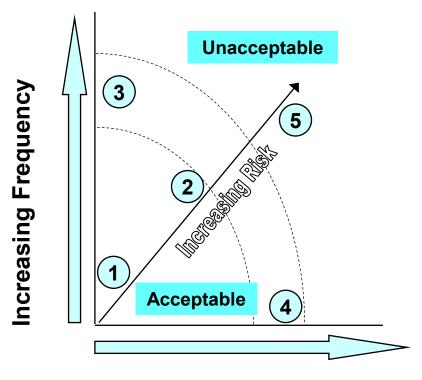
Why Quality Process Hazard Analysis (PHA) is Important

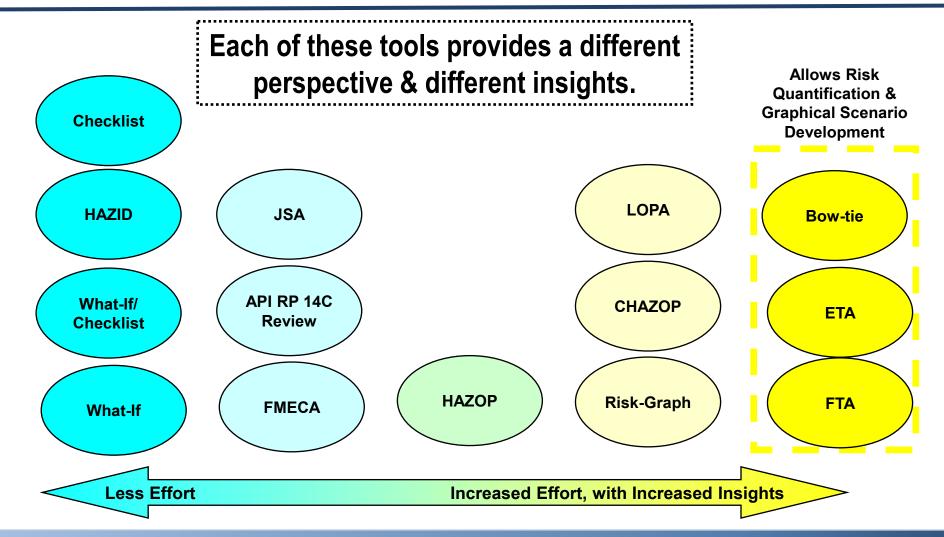


Brief History of Key PHA Techniques and Regulatory Requirements

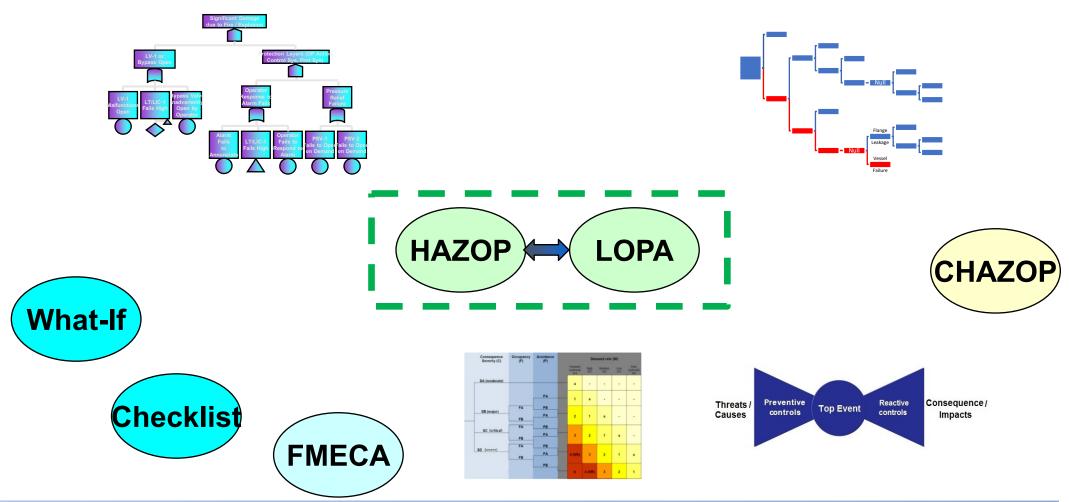


Evolution of SMS Guidelines & Regulations to Performance (Goal) – Based Standards

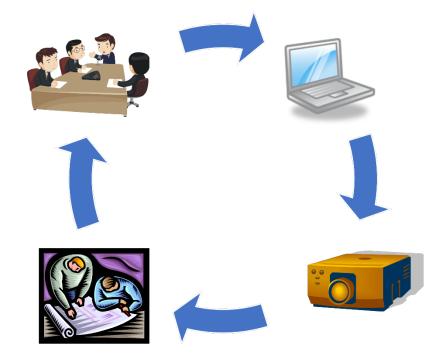

Tandem Advances in Protection System Design Architectures & Analysis


Focusing on the Objective (The "Big Picture")

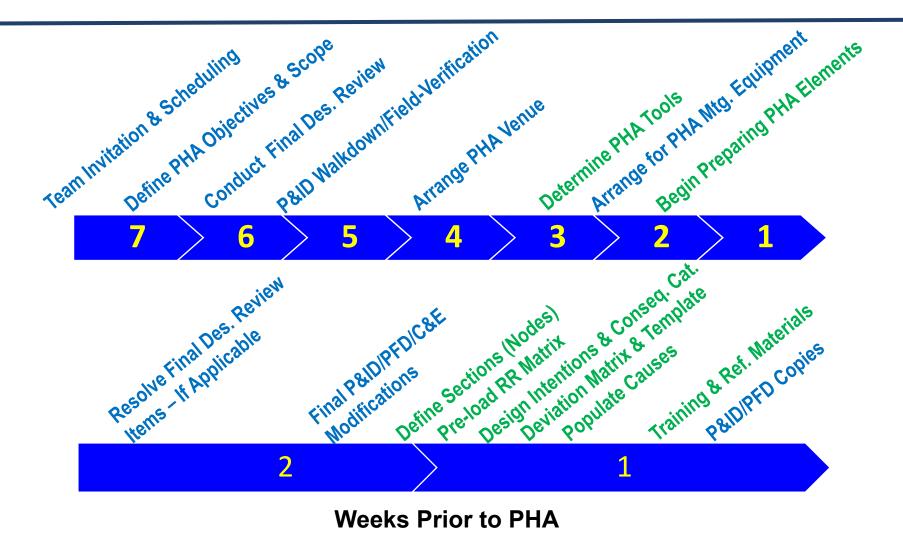
- RISK = PROBABILITY * CONSEQUENCES
 - > Probability = Likelihood of Occurrence
 - > Consequences = Effects of Occurrence
- For Engineered Systems:
 - > Risk = $\sum F_i * C_i$


Increasing Consequences

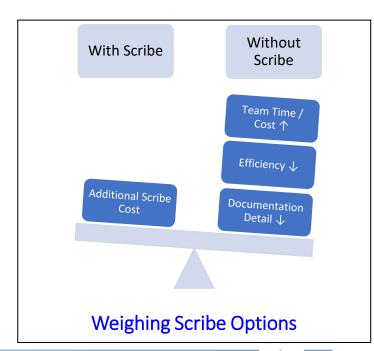
Hazard Analysis Tool Spectrum



HAZOP & LOPA are Core Elements of Hazard Evaluation



Resources & Preparation

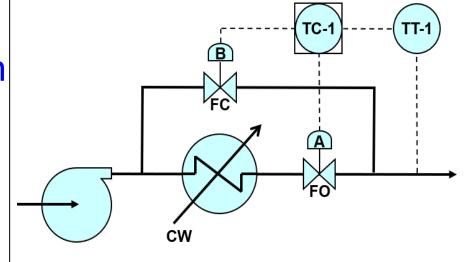


Timeline for PHA Preparation

Planning & Preparation Essentials

- Qualified, Experienced, & Prepared:
 - ➤ <u>Technical Experts</u> who Participate in all Phases of the PHA (Process Engineering, Operations, & Maintenance Disciplines Required by PSM/RMP)
 - Facilitator Additional Skills Required for Remote PHAs
 - ➤ Scribe Engineering, Software, PHA Skills Helpful
- Quality-Checked, Complete, & Field-Verified Engineering Drawings
- Access to Other Key Process Safety Information
- PHA & Revalidation Schedule
- Use of Appropriate PHA Technique
- Cause Pre-Population (Completeness, Grouping for Future-use, Easy Location During PHA)

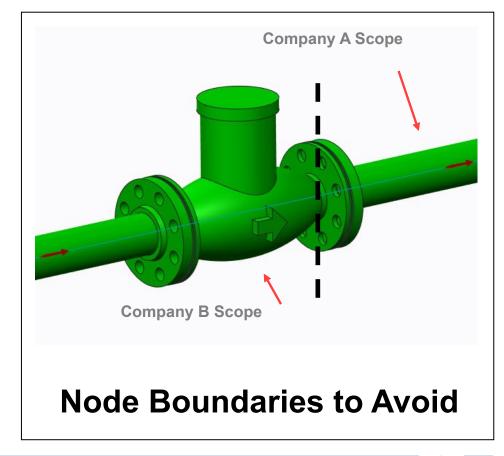
- Facilitator Support
 - ➤ Trains & Drives Team Synchronization
 - ➤ Encourages Participant Involvement/Cooperation
 - ➤ Pushes for Consistent Risk-Ranking
 - ➤ Uses Risk-Ranking to Drive Recommendations
 - ➤ Drives Team to Consistently Bin Probable Worst-Case Consequences & Apply Safeguards Associated with the Scenario
 - ➤ As Appropriate, Links:
 - HAZOP
 - LOPA
 - Quantitative Risk Assessment (QRA)
 - Other Tools/Perspectives


Knowledge Base

- Process Design/Limits & Response to Upset Conditions
- ➤ Instrumentation & Setpoints
- ➤ Control & Protection System Actions
- ➤ Equipment Physical Configuration
- ➤ Operations & Maintenance
- ➤ Management Endorsement & Commitment of Resources
- Team Interaction & Professionalism
 - ➤ Consideration of All Salient Perspectives & Input
 - ➤ Maintaining Focus and Minimizing Interruptions During the PHA
 - **≻**Objectivity
 - ➤ Session Length Should Reflect Process Complexity

Technical Details

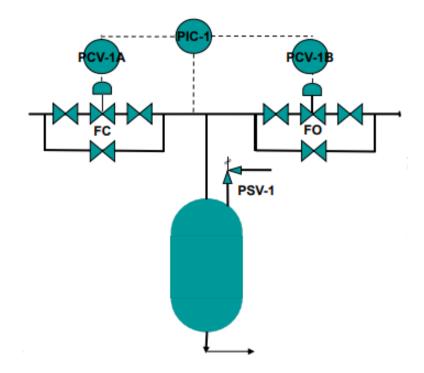
- Process Design/Limits & Response to Upset Conditions
- Overpressure Ratios
- Cause/Consequence Documentation
- Instrumentation & Setpoints
- Control & Protection System Actions
- Valve Failure Mode Clarity
- Crediting Alarms as Safeguards
- Subcomponent Failure Modes



Common Temperature Control System (control station block and bypass valves removed)

PHA Sessions

- Capital Projects vs. Operating Facilities
- Session Length Reflecting Process Complexity
- > PHA Team Training
- Node Completeness Checks
- > PHA Revalidation vs. Re-do
- Node Boundaries
- Avoid Repeating Scenarios



- Information Dynamics
 - ➤ Key Information Requirements
 - Process Flow Diagrams
 - Piping & Instrumentation Diagrams
 - Cause & Effect Diagrams
 - Alarm, Action, and PSV Setpoints Relief Valve Design-basis Documentation
 - Equipment Layout Drawings
 - Access to Other Process Safety Information
 - ➤ A "Parking Lot" for Resolvable PHA Issues to Streamline Efforts
 - ➤ Manageable Drawing Updates Knowing when to Stop
 - ➤ Manageable Information Gaps

Example/Common Information Gaps

- General P&ID Content
 - ➤ Design Pressures/Temperatures/Metallurgy
 - **→**Piping Specifications
- Control Valves
 - ➤ Failure Positions, Size, Setpoints
- Relief Valves
 - ➤ Setpoints, Size, Sizing Basis
- Pumps
 - ➤ Maximum Blocked-in Differential Pressure, Minimum Flow Requirements, Seal Design, Net Positive Suction Head (NPSH), Casing Design Pressure, Discharge Piping Specs
- Block Valves
 - ➤ "Normal" Positions

Documentation

PHA Documentation

Analysis Completeness

- ➤ Specific Causes, with Equipment Numbers Identified
- ➤ Identify Probable Worst-Case Consequences
- ➤ Focus on Reliable, Active, Tagged Safeguards with Sufficient Process Safety Time Link to Cause/Consequence
- ➤ Recommendations (or gap acceptance) Whenever Clearly-Defined Acceptable Risk Level is Not Achieved
- ➤ Valid Operating Modes Addressed
- ➤ Address Related Issues: Security, Siting, Human Factors, Training, Maintenance, Testing, Inspection, Start-up/Shutdown, Previous Incidents

Consistency

- ➤ Risk-Ranking Consistent & Synchronized with Scenario
- ➤ Level of Detail & Scenario Depth Pivoting on Importance

PHA Documentation

Usability

- ➤ Recommendations Understandable, Self-standing, Logical, Complete
- Traceability
 - ➤ Scenarios Logically-developed, Complete, Understandable
 - ➤ Block Valve Inadvertent Mispositioning
 - **➤ Liberal Use of Clarifying Comments**
 - ➤ Team's Evaluation and Basis for Conclusions should be Readily Understood to Support Future Revalidation Efforts
 - Risk-Ranking Consistent & Matched with Scenario
 - ➤ Clear Scope & System Boundaries
 - ➤ Document Team Composition and Experience
 - ➤ Sensible Recommendations Linked to the Scenario
 - ➤ Prolific Use of Equipment Tag Numbers & Cross-Referencing

Example – Causes (1)

- Bad
 - ➤ "Pump fails"
- Helpful
 - ➤ "Active Condensate Stabilizer Bottoms Pump (P-XXXX, P&ID YYYY)
 fails to operate, possibly due to a loss of power."
- Considerations
 - ➤ Use a 20-second rule for locating equipment.
 - Equipment names should exactly match the P&ID and be capitalized for easy spotting and specificity.
 - ➤ Vessel/Pump/Compressor/Activated Valve First time usage in a scenario should have a tag number and P&ID reference.

Example – Causes (2)

- Bad
 - ➤ "Valve closed"
- Helpful
 - ➤ "LV-XXXX (P&ID YYYY) fails closed, possibly due to LT/LC-XXXX malfunctioning low, or block valve inadvertently closed."
- Considerations
 - ➤ Identify root transmitters for Causes & Safeguards.
 - Examples for when to split failure modes as Independent Causes push-pull configuration, operational block valve, multiple controlled devices
 - ➤ Combine sub-failure-modes only when consequences are identical and LOPA results are not impacted.

Example – Causes (3)

- Bad
 - ➤ "ESD valve fails"
- Two Helpful Examples to Not Make a Safeguard into a Causal Event
 - ➤ "XSV-XXXX (P&ID YYYY) failing to close on demand, possibly due to an instrumentation malfunction, is implicit in the PFD associated with a safeguard credited in Scenario ZZ.AA.BB. No new issues were identified by the HAZOP/LOPA Team."
 - ➤ Inadvertent closure of overflow line manual valve is implicit in the PFD associated with a safeguard credited in Scenario ZZ.AA.BB. No new issues were identified by the HAZOP/LOPA Team."
- Considerations
 - > HAZOP/LOPA are scenario-based analyses
 - ➤ If a safeguard's failure is already implicit in a scenario, treating its failure as a separate causal event is inappropriate

Example – Consequences (1)

Bad

"Compressor goes into recycle"

Helpful

➤ "Potential overpressurization of equipment downstream of the operating Gas Export Compressor (C-XXXX, P&ID YYYY). Potential breach, release of flammable gas, fire, and personnel hazard."

Considerations

- ➤ Ensure ULTIMATE CONSEQUENCES are documented.
- ➤Illustrate event sequencing.
- Cascading consequences (e.g., flammable gas release if a PSV opens to control overpressurization) may be handled with a separate consequence category.

Example – Safeguards (1)

- Bad
 - ➤ "Pressure control"
- Helpful
 - ➤ "PT/PC-XXXX (ZZ psig, P&ID YYYY) is designed to open PV-XXXX and prevent overpressurization of the Condensate Stabilizer Column (V-AAAA, P&ID BBBB)."
- Considerations
 - ➤ Use a 20-second rule for locating equipment.
 - ➤ Highlight the setpoint to the HAZOP/LOPA Team, especially to clarify/verify scenario progression.
 - ➤ Validate process safety time.

Example – Safeguards (2)

Bad

"High pressure trip"

Helpful

"PAHH-XXXX (AA barg, P&ID YYYY) is designed to trigger ESD-ZZZZ and trip any operating Gas Export Compressor on high-high discharge pressure."

Considerations

- ➤ Make good use of software type-ahead features.
- ➤ Make it easy to spot common-mode failures.
- ➤ Segue to LOPA.
- ➤ Order safeguards by event sequence.
- ➤ Partition safeguard as an Independent Protection Layer (IPL).

Example – Safeguards (3)

- Bad
 - "Temperature alarm"
- Helpful
 - ➤ "TAH-XXXX (180C, P&ID YYYY) is designed to trigger a Control Room alarm on high outlet temperature and provide the Operator with sufficient time for diagnosis and corrective action."
- Considerations
 - > Typically group alarms as a single safeguard.
 - > Reliability & timing of Operator response to alarm(s):
 - Present to hear the alarm
 - Alarm prioritization and diagnosis
 - Permission for corrective action
 - Initiating the corrective action
 - Time for the corrective action to mitigate the event
 - Only include "effective alarms."

Example – Safeguards (4)

- Example of Compound Safeguard
 - ➤ PSV-XXXX and PSV-YYYY (AA barg, P&ID ZZZZ) both working together are designed to provide overpressure protection for this scenario.
- Considerations
 - ➤ Segue to LOPA
 - ➤ Clear definition of IPL

Example – Recommendations (1)

Bad

> "Review high pressure protection."

Helpful

➤ "To minimize the potential for overpressurizing equipment downstream of the Gas Export Compressor (C-XXXX, P&ID YYYY), consider configuring a high discharge pressure trip of any active compressors."

Considerations

- ➤ Ensure action is clear and minimizes the need for the assignee to review the HAZOP/LOPA Report.
- ➤ Briefly identify the concern.
- ➤Include P&ID references and equipment tag numbers.

Priorities for PHA QA Review

- Completeness Check All Key Causal Events
- Probable Worst-Case Consequences Clearly identified and used as the basis for risk-ranking
- Safeguard/IPL Verification Especially Independence
- <u>Scenarios</u> Interpretable Should present an image of event
- Risk-Ranking Consistent
- Clear Action Items Complete with Focused Basis, Self-Standing
- Same Initiating Event, but Different Deviation Increased potential for confusion and future misuse

Quality Program Control – PHA

- Leadership & Synchronization of Facilitation
- Patterned Examples
- Knowledge Base of Best Practices
- Knowledge Base of Owner/Facility Preferences

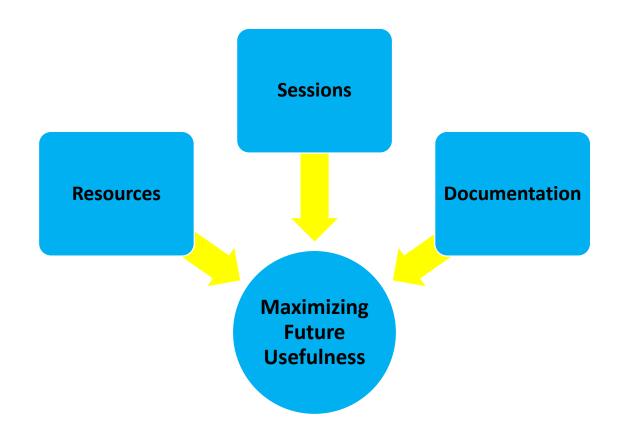
Common PHA Quality Challenges

Common PHA Quality Challenges (1)

- Causal Event Completeness
- Incorrect Ultimate Consequences
 - ➤ From a Major Oil & Gas Company's Guidelines: "Underestimating can lead to insufficient layers of protection being applied and risk being insufficiently managed."
 - ➤ Pre-crediting the mitigative effects of safeguards can result in underestimating the "challenges" to the IPL, leading to a potential for underestimating the needed SIL Assignment for the SIF.
- Missing Safeguards and Overestimation of SIL because BPCS was not Credited as an IPL
- Incorrect Scenario Development Leading to Erroneous
 Conclusions E.g., failure of a safety feature used as an initiating event.

Common PHA Quality Challenges (2)

- LOPA Not Done Properly E.g., IEF, Operator presence for vulnerability factor
- Not Using Software Features to Streamline Effort and Drive Consistency (e.g., careful and consistent application of safeguard patterning) – This can lead to SIL underestimation.
- Duplication of Scenarios Apply the multiple consequence category format and implement discipline.
- Evaluation of Vendor Packages as a Separate Process This is a project organization and discipline application issue.
- Equipment Tag Numbers and P&ID References



Common PHA Quality Challenges (3)

- Programmatic Issues
 - Facilitation/Scribe Team Maintain consistency with a smaller, dedicated set of individuals.
 - **▶** Assignment of a Lead Facilitator for Large, Multi-Team Projects
 - > Facilitator Synchronization Training
 - Focus on Long-Term Objectives The best approach to HAZOP/LOPA documentation is to focus on long-term objectives and potential uses, e.g., Project-MOC, Plant Operations MOC, SIL Assignment, future revalidation, etc.
 - **➤ Quality Assurance Reviews Earlier in the Project Cycle**

Maximizing the Future Usefulness of the PHA

Maximizing the Future Usefulness of the PHA

- Apply Documentation Traceability Tips
- Prolific Use of Equipment Tag Numbers, P&ID References, & Cross-Referencing
- Sensible and Consistent Grouping of Scenarios
- Use Standardized PHA Approach
- Large Nodes Can Allow for a More Holistic Approach
- Qualifications and Experience of Facilitator & Team
- Consider Long-term Use & Strive for "Evergreen" Approach
- Software Longevity & Compatibility

2023 + 2028 + 2033 + 2038 + 2043 + 2048 + 2053 + 2058 + 2063

Questions?

Steven T. Maher, PE CSP

Steve.Maher@RMPCorp.com

949/282-0123

www.RMPCorp.com

