

Human Factors

Miguel Zepeda

Accidental Release Prevention Engineer

Contra Costa Health – Hazardous Materials Programs

CALIFORNIA

FORUM

Agenda

- Define Human Factors and other key concepts.
- Underlying reasons why human errors occur.
- How to analyze and categorize specific human errors to identify the conditions and situations that contribute to mistakes.
- Human performance issues and resulting incidents.What good looks like in an audit.

Regulatory Overview

CalARP - Cal. Code Regs. Tit. 19.

Article 6 - Program 3

- Article 6.5 Program 4
 - Section 2762.15. Human Factors Program.
 - (a) The owner or operator shall develop, implement and maintain an effective written Human Factors Program within eighteen (18) months of the effective date of this Article.
 - (b) The owner or operator shall include a written analysis of human factors where relevant in the design phase of a major change, incident investigations, PHAs, MOOCs, and HCAs. The analysis shall include a description of selected methodologies and criteria for their use.

Regulatory Overview

CalOSHA Process Safety Management (PSM)

- §5189. Process Safety Management of Acutely Hazardous Materials.
- § 5189.1. Process Safety Management for Petroleum Refineries.

 \mathbf{J}

What percentage of car accidents is caused by Human Error?

(i) Start presenting to display the poll results on this slide.

Table 2. Driver-Related Critical Reasons

	Estimated (Based on 94% of the NMVCCS crashes)		
Critical Reason	Number	Percentage* ± 95% conf. limits	
Recognition Error	845,000	41% ±2.2%	
Decision Error	684,000	33% ±3.7%	
Performance Error	210,000	11% ±2.7%	
Non-Performance Error (sleep, etc.)	145,000	7% ±1.0%	
Other	162,000	8% ±1.9%	
Total	2,046,000	100%	

*Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005–2007)

Source: https://www.nhtsa.gov/

Human Performance

Human Factors vs HOP

• Human Factors:

Study of how people interact with technology, tools, environments, and systems.

Underpins many different disciplines, including HOP.

• Human and Organizational Performance:

Seeks to create a culture of continuous learning and improvement to mitigate the risks associated with human variability.

Human Factors Definition

Human factors science or technologies are **multidisciplinary fields** incorporating contributions from psychology, engineering, industrial design, statistics, operations research, and anthropometry.

It covers the science of understanding the properties of **human capability**, the application of this understanding to the **design**, **development**, and **implementation of systems and services**.

From the FAA AMT handbook HF addendum

Human Factors vs. Ergonomics

• Human Factors:

Optimization of system design.

• Ergonomics:

Design of efficient and comfortable products and environments.

Human Error

Human error is defined as a human action with unintended consequences.

History

Original Method of Labeling Cartons

1900s

History

1900s

History

What is Human Factors Analysis

Benefits of Understanding Human Factors

Environment

Physical

Organizational

March 20-23, 2023

Resources

Common Examples

CALIFORNIA

Common Examples

CALIFORNIA

Person Approach

Annual Training Conference March 20-23, 2023

System approach

March 20-23, 2023

Latent Conditions

Tyne & Wear Archives & Museums

Latent Conditions

CALIFORNIA

How to prevent this accident from happening again?

(i) Start presenting to display the poll results on this slide.

MGPI - Atchison, Kansas

ExxonMobil Baton Rouge Refinery - Baton Rouge, Louisiana

97%

What CalARP prevention program requirement was directly involved in this incident?

(i) Start presenting to display the poll results on this slide.

ExxonMobil Baton Rouge Refinery - Baton Rouge, Louisiana

The Three Mile Island Accident

https://www.youtube.com/@kylehill

d Program nference 2023

a los of

an le j B'h d n

an anna ann Martin II parais Answer warm has been When the remote danger is at and the second life A state of the sta

V. M. Sa. M.

Erving paces Sixers win over Bulls-Pass 10 The Philadelphia Inquirer Power Plant Lealis Radiation Minup

south of capital

a public association tone three lower land

d Program nference 2023

d Program nference 2023

BREAK TIME!

Three Mile Island - Londonderry Township, Pennsylvania

Human Factors Analysis Techniques

CALIFORNIA

• Reactive/Proactive

• Can be applied to

situation-specific

and general issues.

Walkthrough Analysis • Reactive/Proactive • Situation-specific • Low-Medium level of effort

Analyses • Reactive/Proactive • Situation-specific • Medium level of effort **Guide Word**

Quantitative Human Reliability Analysis • Reactive/Proactive • Situation-specific

• Requires a Subject

Matter Expert on

the system being

 Reactive/Proactive • Can be applied to situation-specific and general issues. • Varving level of effort

What Does "Good" Look Like During an Audit?

Contra Costa County (CCC) Approach to Human Factors

CALIFORNIA

Training

Operating Procedures

ALIFORNIA

SUP

User-Centered Design Process

Reasons Why People Don't Follow Procedures

- If they were followed to the letter, they could not get done in time (*Practicality*).
- People usually find a better way to do the job (optimization).
- People are not aware that a procedure exists for the job *(Accessibility).*
- People assume they know what is in the procedure.

Procedures Examples

Safety Information

Visual division

Procedure

ALIFORNIA

a Standard operating procedure

Esterification/Methylation of Carboxylic Acids using TMS-diazomethane

Safety considerations

TMSD is a flammable liquid and vapor that is very toxic or fatal when inhaled.

Caution! Trimethylsilyldiazomethane should be regarded as **extremely toxic** and should only be manipulated by the individuals trained in its proper safe use and storage. All procedures must be carried out in a well-ventilated chemical fume hood and all skin contact should be avoided.

- Make sure that eyewash stations and safety showers are close to the chemical fume hood.
- Never manipulate TMS-diazomethane reactions at large scales (above 10 mL).
- Use *proper techniques* and methods when transferring TMSD to a reaction mixture to avoid the spill & exposure.
- As a precautionary measure, keep a small bottle/beaker of acetic acid inside chemical fume hood to quench any spillage or deactivating the remaining TMSD in the syringe.
- Use an oval shape and correct size bar for stirring reaction mixture to avoid flask breakage. Use a plastic or glass dish underneath the reaction flask as a secondary containment or for cooling purposes.

Transferring TMSD

To transfer TMSD using a syringe, you will need a small amount of positive pressure in the reagent container in order to draw the reagent into syringe. Ensure that excess pressure is released through the mineral oil bubbler that is attached to the gas line. If <u>possible</u> use Schlenk line (SL) nitrogen for the TMSD manipulation. SL is equipped with a pressure release system, where the inert gas line is vented through an oil bubbler.

- 1. First, secure the TMSD containing bottle with proper clamp and do not over tighten the bottle (use cotton or other compatible material for the extra safety, and use a secondary containment for reagent bottle).
- 2. Insert a fine needle from an inert gas source with a bubbler outlet into the bottle keeping the needle tip above the liquid level. Do not over pressurize the bottle containing TMSD. The goal of this technique is to equalize the pressure in the reagent bottle. (A different technique is to use inert gas pressure to compel reagent into the syringe, but that has the danger of blowing the plunger out of the syringe body and spilling out TMSD. Flush dry syringe with inert gas, depress the plunger and insert the needle into the Sure/Seal bottle.

Procedures examples

Clear

sequence

Safety Information

Standard operating procedure Esterification/Methylation of Carboxylic Acids using **TMS-diazomethane**

Transferring TMSD

b

- 1. TMSD is a flammable liquid and vapor that is <u>very toxic or fatal when inhaled</u>. Only those trained in its proper safe use and storage should perform this procedure.
 - a. Perform procedure is well-ventilated chemical fume hood and avoid skin contact
 b. Make sure eyewash stations and safety showers are close to the chemical fume hood.
 - Make sure eyewash stations and safety showers are close to the chemical tume
 Never manipulate TMS-diazomethane reactions at large scales (above 10 mL).
 - d. Keep a small bottle/beaker of acetic acid inside chemical fume hood to quench any spillage or deactivating the remaining TMSD in the syringe.
 - Use an oval shape and correct size bar for stirring reaction mixture to avoid flask breakage. Use a plastic or glass dish underneath the reaction flask as a secondary containment or for cooling purposes.
 - f. See Hazard control (Appendix) in event of exposure
- 2. To prepare to transfer TMSD using a syringe
 - a. You will need a small amount of positive pressure in the reagent container to draw the reagent into syringe.
 - Ensure that excess pressure is released through the mineral oil bubbler that is attached to the gas line.
 - c. If possible, use Schlenk line (SL) nitrogen for the TMSD manipulation.
 - i. SL is equipped with a pressure release system, where the inert gas line is vented through an oil bubbler.
- 3. Secure the TMSD containing bottle with proper clamp
 - a. Do not over tighten the bottle
 - b. Use cotton or other compatible material for extra safety
 - c. Use a secondary containment for reagent bottle
- 4. Insert a fine needle from an inert gas source with a bubbler outlet into the bottle keeping the needle tip above the liquid level.
 - a. Do not over pressurize the bottle containing TMSD.
 - i. The goal of this technique is to equalize the pressure in the reagent bottle.
- 5. Flush dry syringe with inert gas
- 6. Depress the plunger
- 7. Insert the needle into the Sure/Seal bottle.
- Pull plunger to fill syringe to 60-70% of syringe volume with TMSD, and up to a maximum of 5 mL of liquid.
 - a. NOTE: Pulling too hard or too fast can cause air bubbles to enter between the plunger and syringe body.
 - b. NOTE: Simple glass syringes are more prone to causing gas bubbles and may drip. Disposable plastic syringes (Fig. 2) have a good seal on the plunger and work well. Glass syringes with Teflon-tipped plungers (gastight) syringes are best.

Procedures Examples

Do this

Cells:

After harvesting the cells, add 1ml of Trizol to the cell pellet. Vortex the pellet well and store at -80°C.

After thawing the stored pellet in ice, isolate the RNA.

Not this

Cells: After harvesting the cells, add 1ml of Trizol to the cell pellet. Vortex the pellet well and store at -80°C. Before isolating RNA, thaw the stored pellet in ice.

CAUTION

ALL SFO SINGLE PRESSURE TYPE OST 136KV OROUT SWITCHERS.

- Open oil drain valve (51013) and drain into contain of a gallon).
- (3) Loosely replace cap on oil fill port 51127 and close valve (51013).
- Remove and replace the large and small oil filters, 51003)(<u>Measuring the Disc Spring Assembly Trav</u> on <u>EXHIBIT A Circuit Switcher Inspection Report</u>.

Fill hydraulic system with EXXON UNIVIS J Fluid 4 ONLY. There are no equivalents or s

- Perform the following to evacuate and fill the hydra mechanism:
- (1) Remove cap from oil fill port (51127).
- (2) Connect a small vacuum pump to oil fill port with a a 3-foot vertical section of transparent hose/tubing Ermetto hydraulic pressure fitting will be require).
- (3) Apply a 1.5 psia vacuum for 15 minutes, reduce va pressure if oil is being removed from mechanism a towards the vacuum pump.
- (4) Cycle, by pushing the rubber caps on the ends of t (53016, 53066) and the close coil (53014) several last cycle must be one of the trip coils.

Incident Investigation

(0) (0)

Fatigue Management API Recommended Practice 755

Normal Operations	Outages	Exception Process	
 Total Hours shall not exceed: 14 Hours per Shift 92 Hours per work-set 	 Total Hours shall not exceed 14 Hours per shift 182 Hours per Work-set 	 Utilized when exceeding hours-of-service Involves immediate supervisor and another management representative Documents risk assessment and mitigation plan 	
Work-set	Work-set	High Risk Exception Process	
 Work-set considered complete when an employee is off work for at least: 46 hours (4+ Night shifts) 34 hours 	Work-set considered complete when an employee is off work for at least: • 34 hours	 Work more than 18 hours in a single shift Return to work prior to having 8 hours off Work more than one extended shift (greater than 14 hours) per work-set Senior site management shall be notified no later than following business day 	

Control Room

- ISO 11064 consists of 8 parts, under the general title *Ergonomic design of control centres*.
- **EEMUA** Publication 201 Control rooms: a guide to their specification, design., commissioning and operation

Control Rooms: A guide to their specification, design, commissioning and operation

Publication 201 Edition

EEMU

Recommendations

Level 1	Level 2	Level 3	Level 4	Level 5
Operator is at fault for reaching into equipment while still in operation.	The operator believed that lifting the guard would disable the machine.	Operator had already received training; the machine used in training was interlocked.	The machine was not fully tested before being placed in operation.	The equipment was needed quickly; the purchasing process did not require a safety interlock on the equipment.
FOCUS OF RECOMMENDATIONS			MORE EFFECTIVE TO PREVENT REOCCURRENCE	
Discipline the operator	Re-train the operator on how to operate the equipment in question.	Operator training should be completed on the specific equipment that will be used on site.	Revise the procedure for introducing new equipment into the workplace to include a safety checklist.	Revise the purchasing process to include a risk assessment process for specific equipment selected for purchase.

Where Human Factors are headed

Common Issues

Poorly timed training.

Field issues (e.g., labeling, access).

- Written program lacks detail.
- Personnel do not understand it.
- Procedure formatting.
- Documentation.

Conclusion

Latent conditions:

- Underestimated cannot change the human
 Training records
- Challenging to condition, but we can changer the edure formatting
 Challenging to Conditions under which humans work
 Time consuming to Analysis Methods used
- Time consuming to address

Look for:

- Employee participation
- Documentation

ANY QUESTIONS?

Miguel Zepeda ARP Engineer Contra Costa County Health – Hazardous Materials Programs Email: miguel.zepeda@cchealth.org Phone: (925) 655-3200

